Органические вещества - углеводы, белки, липиды, нуклеиновые кислоты, атф. §6. Нуклеиновые кислоты. АТФ Роль нуклеиновых кислот и атф в клетке

Строение нуклеиновых кислот

Нуклеиновые кислоты – фосфосодержащие биополимеры живых организмов, обеспечивающие сохранение и передачу наследственной информации.

Макромолекулы нуклеиновых кислот открыл в 1869 г. Швейцарский химик Ф. Мишер в ядрах лейкоцитов, обнаруженных в навозе. Позже нуклеиновые кислоты выявили во всех клетках растений и животных, грибов, в бактериях и вирусах.

Замечание 1

Существует два вида нуклеиновых кислот – дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) .

Как видно из названий, молекула ДНК содержит пентозный сахар дезоксирибозу, а молекула РНК – рибозу.

Сейчас известно большое количество разновидностей ДНК и РНК, которые отличаются друг от друга строением и значением в метаболизме.

Пример 1

В бактериальной клетке кишечной палочки содержится около 1000 разновидностей нуклеиновых кислот, а у животных и растений – ещё больше.

Каждому виду организмов характерен свой собственный набор этих кислот. ДНК локализируется преимущественно в хромосомах клеточного ядра (% всей ДНК клетки), а также в хлоропластах и митохондриях. РНК содержится в цитоплазме, ядрышках, рибосомах, митохондриях, пластидах.

Состоит молекула ДНК из двух полинуклеотидных цепей, спирально закрученных относительно друг друга. Цепы расположены антипараллельно, то есть 3́-конец и 5́-конец.

Структурными компонентами (мономерами) каждой такой цепи являются нуклеотиды . В молекулах нуклеиновых кислот количество нуклеотидов различно - от 80 в молекулах транспортных РНК до нескольких десятков тысяч в ДНК.

Любой нуклеотид ДНК содержит одно из четырёх азотистых оснований (аденин, тимин, цитозин и гуанин ), дезоксирибозу и остаток фосфорной кислоты .

Замечание 2

Нуклеотиды отличаются лишь азотистыми основаниями, между которыми существуют родственные связи. Тимин, цитозин и урацил относятся к пиримидиновым, а аденин и гуанин – к пуриновым основаниям.

Соседние нуклеотиды в полинуклеотидной цепи связаны ковалентными связями, образующимися между дезоксирибозой молекулы ДНК (или рибозой РНК) одного нуклеотида и остатком фосфорной кислоты другого.

Замечание 3

Хотя в молекуле ДНК только четыре типа нуклеотидов, но благодаря изменению последовательности их расположения в длинной цепи молекулы ДНК достигают огромного разнообразия.

Две полинуклеотидные цепи объединяются в единую молекулу ДНК с помощью водородных связей , которые образуются между азотистыми основаниями нуклеотидов разных цепей.

При этом аденин (А) способен соединяться только с тимином (Т), а гуанин (Г) – только с цитозином (Ц). В результате у различных организмов количество адениловых нуклеотидов равно количеству тимидиловых, а количество гуаниловых – количеству цитидиловых. Такая закономерность называется «правило Чаргаффа» . Таким образом определяется последовательность нуклеотидов в одной цепи согласно их последовательность в другой.

Такая способность нуклеотидов к выборочному соединению называется комплементарностью , и это свойство обеспечивает образование новых молекул ДНК на основании исходной молекулы (репликация ).

Замечание 4

Двойная спираль стабилизируется многочисленными водородными связями (две образуются между А и Т, три - между Г и Ц) и гидрофобными взаимодействиями.

Диаметр ДНК составляет 2 нм, шаг спирали – 3,4 нм, а в каждом витке содержится 10 пар нуклеотидов.

Длина молекулы нуклеиновых кислот достигает сотни тысяч нанометров. Это значительно превышает наибольшую макромолекулу белка, длина которой в развёрнутом виде не больше 100 – 200 нм.

Самоудвоение молекулы ДНК

Каждому клеточному делению при условии абсолютно чёткого соблюдения нуклеотидной последовательности предшествует репликация молекулы ДНК.

Начинается она с того, что временно раскручивается двойная спираль ДНК. Это происходит под действием ферментов ДНК-топоизомеразы и ДНК-геликазы. ДНК-полимераза и ДНК-праймаза катализируют полимеризацию нуклеозидтрифосфатов и образование новой цепи.

Точность репликации обеспечивается комплементарным (А – Т, Г – Ц) взаимодействием азотистых оснований матричной цепи, которая строится.

Замечание 5

Каждая полинуклеотидная цепь является матрицей для новой комплементарной цепи. В результате образуются две молекулы ДНК, одна половина каждой из которых происходит от материнской молекулы, а другая является заново синтезированной.

Причём синтезируются новые цепи сначала в виде коротких фрагментов, а потом специальным ферментом эти фрагменты «сшиваются» в длинные цепи.

Две образовавшиеся новые молекулы ДНК являются точной копией исходной молекулы благодаря репликации.

Этот процесс является основой для передачи наследственной информации, которая осуществляющейся на клеточном и организменном уровнях.

Замечание 6

Важнейшая особенность репликации ДНК – её высокая точность, которую обеспечивает специальный комплекс белков – «репликационная машина».

Функции «репликационной машины»:

  • продуцирует углеводы, образующие комплементарную пару с нуклеотидами материнской матричной цепи;
  • выступает катализатором при образовании ковалентной связи между концом растущей цепи и каждым новым нуклеотидом;
  • корректирует цепь, удаляя нуклеотиды, которые неправильно включились.

Число ошибок «репликационной машины» составляет очень малую величину, менее одной ошибки на 1 млрд. нуклеотидов.

Однако бывают случаи, когда «репликационная машина» может пропустить или вставить несколько лишних оснований, включить Ц вместо Т или А вместо Г. Каждая такая замена последовательности нуклеотидов в молекуле ДНК является генетической ошибкой и называется мутацией . Во всех последующих поколениях клеток такие ошибки будут снова воспроизводиться, что может привести к заметным негативным последствиям.

Типы РНК и их функции

РНК представляет из себя одну полинуклеотидную цепь (у некоторых вирусов две цепи).

Мономерами являются рибонуклеотиды.

Азотистые основания в нуклеотидах:

  • аденин (А);*
  • гуанин (Г);
  • цитозин (Ц);
  • урацил (У).*

Моносахарид – рибоза.

В клетке локализируется в ядре (ядрышке), митохондриях, хлоропластах, рибосомах, цитоплазме.

Синтезируется путём матричного синтеза по принципу комплементарности на одной из цепей ДНК, не способна к репликации (самоудвоению), лабильна.

Существуют различные типы РНК, которые отличаются по величине молекул, структуре, расположением в клетке и функциям.

Низкомолекулярные транспортные РНК (тРНК) составляют около 10% общего количества клеточной РНК.

В процессе передачи генетической информации каждая тРНК может присоединить и перенести лишь определённую аминокислоту (например, лизин) к рибосомам – месту синтеза белка. Но для каждой аминокислоты есть более одной тРНК. Потому существует намного больше 20 различных тРНК, которые отличаются по своей первичной структуре (имеют различную последовательность нуклеотидов).

Рибосомальные РНК (рРНК) составляют до 85% всех РНК клетки. Входя в состав рибосом они выполняют тем самым структурную функцию. Также рРНК берут участие в формировании активного центра рибосомы, где в процессе биосинтеза белка образуются пептидные связи между молекулами аминокислот.

С участием информационных, или матричных, РНК (иРНК) программируется синтез белков в клетке. Хотя их содержание в клетке относительно низкое – около 5% - от общей массы всех РНК клетки, по своему значению иРНК стоят на первом месте, поскольку они непосредственно осуществляют передачу кода ДНК для синтеза белков. При этом каждый белок клетки кодирует специфическая иРНК. Объясняется это тем, что РНК во время своего синтеза получают информацию от ДНК о структуре белка в виде скопированной последовательности нуклеотидов и для обработки и реализации переносят её к рибосоме.

Замечание 7

Значение всех типов РНК состоит в том, что они являются функционально объединённой системой, направленной на осуществление в клетке синтеза специфических для неё белков.

Химическое строение и роль АТФ в энергетическом обмене

Аденозинтрифосфорная кислота (АТФ ) содержится в каждой клетке – в гиалоплазме (растворимой фракции цитоплазмы), митохондриях, хлоропластах и ядре.

Она обеспечивает энергией большинство реакций, происходящих в клетке. С помощью АТФ клетка способна двигаться, синтезировать новые молекулы белков, жиров и углеводов, избавляться от продуктов распада, осуществлять активный транспорт и т.п.

Молекула АТФ образована азотистым основанием, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ между собой соединены высокоэнергетическими (макроэргическими) связями.

В результате гидролитического отщепления конечной фосфатной группы образуется аденозиндифосфорная кислота (АДФ ) и освобождается энергия.

После отщепления второй фосфатной группы образуется аденозинмонофосфорная кислота (АМФ) и высвобождается ещё одна порция энергии.

АТФ образуется из АДФ и неорганического фосфата за счёт энергии, которая освобождается во время окисления органических веществ и в процессе фотосинтеза. Называется этот процесс называется фосфориллированием. При этом должно быть использовано не менее 40 кДж/моль АТФ, аккумулированной в её макроэргических связях.

Значит, основное значение процессов дыхания и фотосинтеза состоит в том, что они поставляют энергию для синтеза АТФ, при участии которой в клетке происходит значительное количество различных процессов.

АТФ чрезвычайно быстро восстанавливается. Пример У человека каждая молекула АТФ расщепляется и снова возобновляется 2400 раз на сутки, потому средняя длительность её жизни менее 1 мин.

Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах. АТФ, которая образовалась, по каналах эндоплазматического ретикуллюма поступает в те участки клетки, где необходима энергия.

Любые виды клеточной активности происходят за счёт энергии, которая освобождается во время гидролиза АТФ. Оставшаяся энергия (около 50%), которая освобождается во время расщепления молекул белков, жиров, углеводов и других органических соединений, рассеивается в виде тепла рассеивается и практически существенного значения для жизнедеятельности клетки не имеет.

Рибонуклеиновые кислоты (как и ДНК) тоже являются полимерами, мономерами которых служат нуклеотиды. Но нуклеотиды РНК отличаются по своему химическому составу от нуклеотидов ДНК. В состав нуклеотидов РНЕ, в отличие от нуклеотидов ДНК, входит вместо пентозы дезоксирибозы пентоза рибоза. В составе нуклеотидов РНК отсутствует азотистое основание тимин. Оно заменяется другим азотистым основанием, которое называется урацил. Таким образом, нуклеотид РНК можно представить в виде следующей схемы:

В отличие от молекулы ДНК, молекула РНК представляет собой не двойную, а одинарную спираль (рис. 3)

Рис. 3. Схема строения молекул ДНК и РНК

Существует три основных типа РНК, которые отличаются друг от друга по месту локализации в клетке, нуклеотидному составу, размерам и выпол­няемым функциям. Это - информационная, или ее еще называют матрич­нойРНК (и-РНК или м-РНК), транспортная РНК (т-РНК) и рибосомная РНК (р-РНК).

Информационная РНК строится по принципу комплементарности на одной из цепей ДНК в ядре клетки, снимая с нее тем самым информацию, которая необходима для построения рибосомой определенного с заданны­ми свойствами белка. Информационная РНК не только снимает информа­цию с молекулы ДНК, но и несет эту информацию в рибосому, благодаря способности покидать пределы ядра. Процесс построения и-РНК на молекуле ДНК называется транскрипцией.

Для построения белка недостаточно иметь только информацию. Белок строится в рибосоме из аминокислот, которые необходимо транспортиро­вать сюда из цитоплазмы, где они находятся в свободном состоянии. Эту функцию выполняют молекулы транспортной РНК. Они невелики по раз­меру и имеют постоянную вторичную структуру, которая напоминает лист клевера.

Существует 20 видов транспортных РНК, так как каждый из них может переносить только одну из 20 видов аминокислот, используемых клеткой для синтеза белка.

Рибосомная РНК обеспечивает структурную функцию. Ее молекулы вместе с молекулами рибосомных белков обеспечивают определенное про­странственное расположение и-РНК и т-РНК на рибосоме. Процесс синтеза белка из аминокислот на матрице (форме) и-РНК называется трансляцией.

Важнейшей биологической функцией нуклеиновых кислот является их участие в биосинтезе белка, лежащего в основе механизмов нормально­го роста и развития организма, они также хранят и передают наследствен­ную информацию.

Аденозинтрифосфорная кислота (АТФ)

Аденозинтрифосфорная кислота - вещество, которое используется клеткой как универсальный биологический аккумулятор энергии. Для того чтобы понять, как АТФ удается выполнять столь важную для жизнедея­тельности клетки функцию, необходимо познакомиться с химическим стро­ением ее молекулы. Молекула АТФ представляет собой уже знакомую вам структуру, которая называется нуклеотидом. Он состоит из азотистого ос­нования аденина, углевода рибозы и трех остатков фосфорной кислоты:

Две химические связи в молекуле АТФ (О ~ Р) называются макроэргическими связями, их отличительная особенность состоит в том, что они заключают в себе гораздо больше энергии, чем какие бы то ни было дру­гие химические связи. Разрушаются макроэргические связи при взаимодей­ствии АТФ с водой (такие реакции называются реакциями гидролиза). Когда в результате гидролиза от молекулы АТФ отщепляется одна молекула фосфорной кислоты, она превращается в молекулу АДФ (аденозиндифосфорную кислоту) (рис. 4), а при дальнейшем гидролизе молекула АДФ превращается в молекулу АМФ (аденозинмонофосфорную кислоту). В первом случае, при разрыве одной макроэргической связи выделяется 42 кДж энергии, во втором – еще 42 кДж энергии.

Таким образом, в результате расщепления молекулы АТФ выделяется огромное количество энергии (84 кДж), которая расходуется клеткой на процессы жизнедеятельности. Накапливается запас молекул АТФ в особой органелле клетки, которая называется митохондрией.

Рис. 4. Схема строения АТФ и превращения ее в АДФ

1. В тетради назовите сходства и отличия в строении ДНК и РНК.

2. В тетради дайте определение понятиям: комплементарность, репликация, траскрипция, трансляция, ген.

Обозначьте знаком «+» все правильные ответы:

3. В состав нуклеотида входят:

 А) пентоза;  Б) остаток фосфорной кислоты;

 В) гексоза;  Г) азотистое основание;

 Д) остаток сульфатной кислоты

4. Мономеры нуклеиновых кислот:

 А) моносахариды;  Б) нуклеозиды;

 В) аминокислоты;  Г) нуклеотиды;

 Д) азотистые основания

5. В состав нуклеотидов молекулы ДНК входят:

 Г) цитозин;  Д) урацил

6. В состав нуклеотидов РНК входят:

 А) рибоза;  Б) дезоксирибоза;  В) тимин;

 Г) аденин;  Д) урацил

7. Соседние нуклеотиды в полинуклеотидной цепи соединены связями:

 А) водородными;  Б) ковалентными;

 В) гидрофильно-гидрофобными взаимодействиями;

 Г) ионными;  Д) пептидными

8. Определите соответствие между молекулами и их функциями:

 А) АТФ 1) является матрицей для синтеза белка

 Б) р-РНК 2) транспортирует к месту синтеза белка

аминокислоты

 В) и-РНК 3) входит в состав рибосом

 Г) т-РНК 4) является универсальным перенос-

чиком энергии

5) является матрицей для синтеза и-РНК

9. По правилу комплементарности определите последовательность нуклеотидов второй цепочки ДНК, если последовательность первой цепочки следующая:

ААА ГГЦ ТАА ТТТ ЦАГ

 А) ТТЦ ЦТА АТТ ААЦ ГГЦ;

 Б) ТТТ ЦЦГ ТТА ААГ ГТЦ;

 В) ТТТ ЦЦГ АТТ ААА ГТЦ;

 Г) ГГЦ ТАТ ГГТ ААТ ГТЦ.

10. Определите количество аминокислот, которые входят в состав белка, который кодируется последовательностью из 1035 нуклеотидов:

 А) 1035;  Б) 173;  В) 154;  Г) 345

Нуклеиновые кислоты (от лат. nucleus – ядро) – кислоты, впервые обнаруженные при исследовании ядер лейкоцитов; были открыты в 1868 г. И.Ф. Мишером, швейцарским биохимиком. Биологическое значение нуклеиновых кислот - хранение и передача наследственной информации; они необходимы для поддержания жизни и для ее воспроизведения.

Нуклеиновые кислоты

Нуклеотид ДНК и нуклеотид РНК имеют черты сходства и различия.

Строение нуклеотида ДНК

Строение нуклеотида РНК

Молекула ДНК – двойная цепь, закрученная по спирали.

Молекула РНК представляет собой одиночную нить нуклеотидов, схожую по строению с отдельной нитью ДНК. Только вместо дезоксирибозы РНК включает другой углевод – рибозу (отсюда и название), а вместо тимина – урацил.

Две нити ДНК соединены друг с другом водородными связями. При этом наблюдается важная закономерность: напротив азотистого основания аденин А в одной цепи располагается азотистое основание тимин Т в другой цепи, а против гуанина Г всегда расположен цитозин Ц. Эти пары оснований называют комплементарными парами.

Таким образом, принцип комплементарности (от лат. complementum – дополнение) состоит в том, что каждому азотистому основанию, входящему в нуклеотид, соответствует другое азотистое основание. Возникают строго определенные пары оснований (А – Т, Г – Ц), эти пары специфичны. Между гуанином и цитозином – три водородные связи, а между аденином и тимином возникают две водородные связи в нуклеотиде ДНК, а в РНК две водородные связи возникают между аденином и урацилом.

Водородные связи между азотистыми основаниями нуклеотидов

Г ≡ Ц Г ≡ Ц

В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т. е. удвоения).

Таким образом, количественное содержание азотистых оснований в ДНК подчинено некоторым правилам:

1) Сумма аденина и гуанина равна сумме цитозина и тимина А + Г = Ц + Т.

2) Сумма аденина и цитозина равна сумме гуанина и тимина А + Ц = Г + Т.

3) Количество аденина равно количеству тимина, количество гуанина равно количеству цитозина А = Т; Г = Ц.

При изменении условий ДНК, подобно белкам, может подвергаться денатурации, которая называется плавлением.

ДНК обладает уникальными свойствами: способностью к самоудвоению (репликация, редупликация) и способностью к самовосстановлению (репарация). Репликация обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле. Но в процессе репликации иногда возникают ошибки. Способность молекулы ДНК исправлять ошибки, возникающие в ее цепях, то есть восстанавливать правильную последовательность нуклеотидов, называется репарацией .

Молекулы ДНК находятся в основном в ядрах клеток и в небольшом количестве в митохондриях и пластидах – хлоропластах. Молекулы ДНК – носители наследственной информации.

Строение, функции и локализация в клетке. Различают три вида РНК. Названия связаны с выполняемыми функциями:

Сравнительная характеристика нуклеиновых кислот

Аденозинфосфорные кислоты - аденозинтрифосфорная кислота (АТФ), аденозиндифосфорная кислота (АДФ), аденозинмонофосфорная кислота (АМФ).

В цитоплазме каждой клетки, а также в митохондриях, хлоропластах и ядрах содержится аденозинтрифосфорная кислота (АТФ). Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, осуществляет активный транспорт веществ, биение жгутиков и ресничек.

АТФпо строению сходна с адениновым нуклеотидом, входящим в состав РНК, только вместо одной фосфорной кислоты в состав АТФ входят три остатка фосфорной кислоты.

Строение молекулы АТФ:

Неустойчивые химические связи, которыми соединены молекулы фосфорной кислоты в АТФ, очень богаты энергией. При разрыве этих связей выделяется энергия, которая используется каждой клеткой для обеспечения процессов жизнедеятельности:

АТФ АДФ + Ф + Е

АДФ АМФ + Ф + Е,

где Ф – фосфорная кислота Н3РО4, Е – освобождающаяся энергия.

Химические связи в АТФ между остатками фосфорной кислоты, богатые энергией, называются макроэргическими связями . Отщепление одной молекулы фосфорной кислоты сопровождается выделением энергии – 40 кДж.

АТФ образуется из АДФ и неорганического фосфата за счет энергии, освобождающейся при окислении органических веществ и в процессе фотосинтеза. Этот процесс называется фосфорилированием.

При этом должно быть затрачено не менее 40 кДж/моль энергии, которая аккумулируется в макроэргических связях. Следовательно, основное значение процессов дыхания и фотосинтеза определяется тем, что они поставляют энергию для синтеза АТФ, с участием которой в клетке выполняется большая часть работы.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь восстанавливается 2 400 раз в сутки, так что ее средняя продолжительность жизни менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах (частично в цитоплазме). Образовавшаяся здесь АТФ направляется в те участки клетки, где возникает потребность в энергии.

АТФ играет важную роль в биоэнергетике клетки: выполняет одну из важнейших функций – накопителя энергии, это универсальный биологический аккумулятор энергии.

Что такое ДНК и РНК? Каковы их функции и значение в нашем мире? Из чего они состоят и как работают? Об этом и не только рассказывается в статье.

Что такое ДНК и РНК

Биологические науки, изучающие принципы хранения, реализации и передачи генетической информации, структуру и функции нерегулярных биополимеров относятся к молекулярной биологии.

Биополимеры, высокомолекулярные органические соединения, которые образовались из остатков нуклеотидов, являются нуклеиновыми кислотами. Они хранят информацию о живом организме, определяют его развитие, рост, наследственность. Эти кислоты участвуют в биосинтезе белка.

Различают два вида нуклеиновых кислот, содержащихся в природе:

  • ДНК — дезоксирибонуклеиновая;
  • РНК — рибонуклеиновая.

О том, что такое ДНК, миру было поведано в 1868 году, когда ее открыли в клеточных ядрах лейкоцитов и сперматозоидов лосося. Позже они были обнаружены во всех животных и растительных клетках, а также в бактериях, вирусах и грибах. В 1953 году Дж. Уотсон и Ф. Крик в результате рентгено-структурного анализа выстроили модель, состоящую из двух полимерных цепей, которые закручены спиралью одна вокруг другой. В 1962 году эти ученые были удостоены Нобелевской премии за свое открытие.

Дезоксирибонуклеиновая кислота

Что такое ДНК? Это нуклеиновая кислота, которая содержит генотип индивида и передает информацию по наследству, самовоспроизводясь. Поскольку эти молекулы являются очень большими, имеется огромное количество возможных последовательностей из нуклеотидов. Поэтому число различных молекул является фактически бесконечным.

Структура ДНК

Это самые крупные биологические молекулы. Их размер составляет от одной четверти у бактерий до сорока миллиметров в ДНК человека, что гораздо больше максимального размера белка. Они состоят из четырех мономеров, структурных компонентов нуклеиновых кислот — нуклеотидов, в которые входит азотистое основание, остаток фосфорной кислоты и дезоксирибоза.

Азотистые основания имеют двойное кольцо из углерода и азота— пурины, и одно кольцо — пиримидины.

Пуринами являются аденин и гуанин, а пиримидинами — тимин и цитозин. Они обозначаются заглавными латинскими буквами: A, G, T, C; а в русской литературе — на кириллице: А, Г, Т, Ц. При помощи химической водородной связи они соединяются друг с другом, в результате чего появляются нуклеиновые кислоты.

Во Вселенной именно спираль является наиболее распространенной формой. Так и структура ДНК молекулы тоже имеет ее. Полинуклеотидная цепочка закручена наподобие винтовой лестницы.

Цепи в молекуле направлены противоположно друг от друга. Получается, если в одной цепи от 3"-конца к 5", то в другой цепи ориентация будет наоборот от 5"-конца к 3".

Принцип комплементарности

Две нити соединяются в молекулу азотистыми основаниями таким образом, что аденин имеет связь с тимином, а гуанин — только с цитозином. Последовательно расположенные нуклеотиды в одной цепи определяют другую. Это соответствие, лежащее в основе появления новых молекул в результате репликации или удвоения, стало называться комплементарностью.

Получается, что число адениловых нуклеотидов равно числу тимидиловых, а гуаниловые равны количеству цитидиловых. Это соответствие стало называться «правилом Чаргаффа».

Репликация

Процесс самовоспроизведения, протекающий под контролем ферментов, является основным свойством ДНК.

Все начинается с раскручивания спирали благодаря ферменту ДНК-полимеразы. После разрыва водородных связей, в одной и в другой нитях синтезируется дочерняя цепь, материалом для которой выступают свободные нуклеотиды, имеющиеся в ядре.

Каждая цепь ДНК является матрицей для новой цепи. В результате из одной получаются две абсолютно идентичные материнской молекулы. При этом одна нить синтезируется сплошной, а другая сначала фрагментарно, лишь затем соединяясь.

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

Рибонуклеиновая кислота

Эта молекула во многом схожа с дезоксирибонуклеиновой кислотой. Однако она не такая большая, как ДНК. И РНК также состоит из полимерных нуклеотидов четырех типов. Три из них сходны с ДНК, но вместо тимина в нее входит урацил (U или У). Кроме этого, РНК состоит из углевода — рибозы. Главным отличием служит то, что спираль этой молекулы является одинарной, в отличие от двойной в ДНК.

Функции РНК

В основе функций рибонуклеиновой кислоты лежат три различных вида РНК.

Информационная передает генетическую информацию от ДНК в цитоплазму ядра. Ее еще называют матричной. Это незамкнутая цепь, синтезирующаяся в ядре при помощи фермента РНК-полимеразы. Несмотря на то что в молекуле ее процентное содержание чрезвычайно низкое (от трех до пяти процентов клетки), на ней лежит важнейшая функция - являться матрицей для синтеза белков, информируя об их структуре с молекул ДНК. Один белок кодируется одной специфичной ДНК, поэтому их числовое значение равное.

Рибосомная в основном состоит из цитоплазматических гранул — рибосом. Р-РНК синтезируются в ядре. На их долю приходится примерно восемьдесят процентов всей клетки. Этот вид обладает сложной структурой, образовывая петли на комплементарных частях, что ведет к молекулярной самоорганизации в сложное тело. Среди них имеются три типа у прокариот, и четыре — у эукариот.

Транспортная действует в роли «адаптера», выстраивая в соответствующем порядке аминокислоты полипептидной цепи. В среднем, она состоит из восьмидесяти нуклеотидов. В клетке их содержится, как правило, почти пятнадцать процентов. Она предназначена переносить аминокислоты туда, где белок синтезируется. В клетке насчитывается от двадцати до шестидесяти типов транспортной РНК. У них всех — сходная организация в пространстве. Они приобретают структуру, которую называют клеверным листом.

Значение РНК и ДНК

Когда было открыто, что такое ДНК, ее роль не была такой очевидной. Даже сегодня, несмотря на то, что раскрыто намного больше информации, остаются без ответов некоторые вопросы. А какие-то, возможно, еще даже не сформулированы.

Общеизвестное биологическое значение ДНК и РНК заключаются в том, что ДНК передает наследственную информацию, а РНК участвует в синтезе белка и кодирует белковую структуру.

Однако существуют версии, что эта молекула связана с нашей духовной жизнью. Что такое ДНК человека в этом смысле? Она содержит всю информацию о нем, его жизнедеятельности и наследственности. Метафизики считают, что опыт прошлых жизней, восстановительные функции ДНК и даже энергия Высшего «Я» - Творца, Бога содержится в ней.

По их мнению, цепочки содержат коды, касающиеся всех аспектов жизни, включая и духовную часть. Но некоторая информация, например, о восстановлении своего тела, расположена в структуре кристалла многомерного пространства, находящегося вокруг ДНК. Она представляет собой двенадцатигранник и является памятью всей жизненной силы.

Ввиду того, что человек не обременяет себя духовными знаниями, обмен информации в ДНК с кристаллической оболочкой происходит очень медленно. У среднестатистического человека он составляет всего пятнадцать процентов.

Предполагается, что это было сделано специально для сокращения жизни человека и падения на уровень дуальности. Таким образом, у человека растет кармический долг, а на планете поддерживается необходимый для некоторых сущностей уровень вибрации.

Химический состав клетки
Тема:
«Нуклеиновые кислоты: ДНК
РНК. АТФ»
Задачи:
Дать характеристику нуклеиновым кислотам,
видам НК, локализации их в клетке, строению,
функциям.
Сформировать знания о строении и функциях
АТФ.

Нуклеиновые кислоты (НК)
К нуклеиновым кислотам относят
высокополимерные соединения,
образующие при гидролизе пуриновые и
пиримидиновые основания, пентозу и
фосфорную кислоту. Нуклеиновые
кислоты содержат С, Н, О, Р и N.
Различают два класса нуклеиновых
кислот: рибонуклеиновые кислоты
(РНК), содержащие сахар рибозу
(С5Н10О5) и дезоксирибонуклеиновые
кислоты (ДНК), содержащие сахар
дезоксирибозу (С5Н10О4).
Значение нуклеиновых кислот для живых организмов заключается в
обеспечении хранения, реализации и передачи наследственной
информации.
ДНК содержатся в ядре, митохондриях и хлоропластах – хранят
генетическую информацию. РНК – содержится еще и в цитоплазме и
отвечает за биосинтез белка.

Нуклеиновые кислоты (НК)
Молекулы ДНК являются полимерами,
мономерами которых являются
дезоксирибонуклеотиды, образованные
остатками:
1. Фосфорной кислоты;
2. Дезоксирибозы;
3. Азотистого основания (пуринового -
аденина, гуанина или пиримидинового -
тимина, цитозина).
Трехмерная модель пространственного
строения молекулы ДНК в виде двойной
спирали была предложена в 1953 г.
американским биологом Дж.Уотсоном и
английским физиком Ф.Криком. За свои
исследования они были удостоены
Нобелевской премии.

Нуклеиновые кислоты (НК)
Практически Дж.Уотсон и Ф.Крик раскрыли химическую структуру гена.
ДНК обеспечивает хранение, реализацию и передачу наследственной
информации.

Нуклеиновые кислоты (НК)
Э.Чаргафф, обследовав огромное
количество образцов тканей и
органов различных организмов,
выявил следующую
закономерность:
в любом фрагменте ДНК
содержание остатков гуанина
всегда точно соответствует
содержанию цитозина, а аденина
- тимину.
Это положение получило название
"правила Чаргаффа":
А+Г
А = Т; Г = Ц
или --- = 1
Ц+Т

Нуклеиновые кислоты (НК)
Дж.Уотсон и Ф.Крик
воспользовались этим правилом
при построении модели молекулы
ДНК. ДНК представляет собой
двойную спираль. Ее молекула
образована двумя
полинуклеотидными цепями,
спирально закрученными друг
около друга, и вместе вокруг
воображаемой оси.
Диаметр двойной спирали ДНК - 2
нм, шаг общей спирали, на который
приходится 10 пар нуклеотидов -
3,4 нм. Длина молекулы - до
нескольких сантиметров.
Молекулярный вес составляет
десятки и сотни миллионов. В ядре
клетки человека общая длина ДНК
около 1 - 2м.

Нуклеиновые кислоты (НК)
Азотистые основания имеют циклическую структуру, в состав
которой наряду с атомами углерода входят атомы других элементов,
в частности азота. За присутствие в этих соединениях атомов азота
они и получили название азотистых, а поскольку они обладают
щелочными свойствами - оснований. Азотистые основания
нуклеиновых кислот относятся к классам пиримидинов и пуринов.

Характеристика ДНК
В результате реакции конденсации
азотистого основания и дезоксирибозы
образуется нуклеозид.
При реакции конденсации между
нуклеозидом и фосфорной кислотой
образуется нуклеотид.
Названия нуклеотидов отличаются от
названий соответствующих оснований.
И те, и другие принято обозначать
заглавными буквами (А,Т,Г,Ц):
Аденин – адениловый; гуанин –
гуаниловый; цитозин – цитидиловый;
тимин – тимидиловый нуклеотиды.

Характеристика ДНК
Одна цепь нуклеотидов
образуется в результате
реакций конденсации
нуклеотидов.
При этом между 3"-углеродом
остатка сахара одного
нуклеотида и остатком
фосфорной кислоты другого
возникает фосфодиэфирная
связь.
В результате образуются
неразветвленные
полинуклеотидные цепи. Один
конец полинуклеотидной цепи
заканчивается 5"-углеродом (его
называют 5"-концом), другой –3"углеродом (3"-концом).

10.

Характеристика ДНК

11.

Характеристика ДНК
Против одной цепи нуклеотидов
располагается вторая цепь.
Полинуклеотидные цепи в молекуле ДНК
удерживаются друг около друга
благодаря возникновению водородных
связей между азотистыми основаниями
нуклеотидов, располагающихся друг
против друга.
В основе лежит принцип комплементарного взаимодействия пар
оснований: против аденина - тимин на другой цепи, а против гуанина цитозин на другой, то есть аденин комплементарен тимину и между
ними две водородные связи, а гуанин - цитозину (три водородные
связи).
Комплементарностью называют способность нуклеотидов к
избирательному соединению друг с другом.

12.

Характеристика ДНК

13.

Характеристика ДНК
Цепи ДНК антипараллельны
(разнонаправлены), то есть против
3"-конца одной цепи находится 5"конец другой.
На периферию молекулы обращен
сахаро-фосфатный остов. Внутрь
молекулы обращены азотистые
основания.
Одним из уникальных свойств
молекулы ДНК является ее
репликация – способность к
самоудвоению - воспроизведению
точных копий исходной молекулы.

14.

15.

Репликация ДНК
Благодаря этой способности
молекулы ДНК, осуществляется
передача наследственной
информации от материнской клетки
дочерним во время деления.
Процесс самоудвоения молекулы
ДНК называют репликацией.
Репликация - сложный процесс,
идущий с участием ферментов
(ДНК-полимераз и других) и
дезоксирибонуклеозидтрифосфатов.
Репликация осуществляется
полуконсервативным способом, то
есть каждая цепь ДНК выступает в
роли матрицы, по принципу
комплементарности достраивается
новая цепь. Таким образом, в
каждой дочерней ДНК одна цепь
является материнской, а вторая -
вновь синтезированной.

16.

Репликация ДНК
В материнской ДНК цепи
антипараллельны. ДНКполимеразы способны
двигаться в одном
направлении - от 3"конца к 5"-концу, строя
дочернюю цепь
антипараллельно - от 5" к
3"-концу.
Поэтому ДНК-полимераза
непрерывно
передвигается в
направлении 3"→5" по
одной цепи, синтезируя
дочернюю. Эта цепь
называется лидирующей.

17.

Репликация ДНК
Другая ДНК-полимераза
движется по другой цепи в
обратную сторону (тоже в
направлении 3"→5"),
синтезируя вторую дочернюю
цепь фрагментами (их
называют фрагменты
Оказаки), которые после
завершения репликации
сшиваются лигазами в единую
цепь. Эта цепь называется
отстающей.
Таким образом, на цепи 3"-5"
репликация идет непрерывно,
а на цепи 5"-3" - прерывисто.

18.

19. Характеристика РНК

Молекулы РНК являются полимерами,
мономерами которых являются
рибонуклеотиды, образованные: остатком
пятиуглеродного сахара - рибозы; остатком
одного из азотистых оснований: пуриновых -
аденина, гуанина; пиримидиновых - урацил,
цитозина; остатком фосфорной кислоты.

20. Характеристика РНК

Молекула РНК представляет собой
неразветвленный полинуклеотид, который
может иметь первичную структуру –
последовательность нуклеотидов, вторичную
– образование петель за счет спаривания
комплементарных нуклеотидов, или
третичную структуру – образование
компактной структуры за счет
взаимодействия спирализованных участков
вторичной структуры.

21.

Характеристика РНК
В результате реакции конденсации азотистого основания с сахаром
рибозой образуется рибонуклеозид, при реакции конденсации
нуклеозида с фосфорной кислотой образуется рибонуклеотид.
Названия нуклеотидов: пуриновых (бициклических) – адениловый,
гуаниловый, пиримидиновых – уридиловый и цитидиловый.

22. Характеристика РНК

23.

Характеристика РНК
Нуклеотиды РНК при реакции
конденсации образуют
сложноэфирные связи, так
образуется полинуклеотидная
цепочка.

24. Характеристика РНК

В отличие от ДНК, молекула РНК обычно
образована не двумя, а одной
полинуклеотидной цепочкой. Однако ее
нуклеотиды также способны образовывать
водородные связи между собой, но это
внутри–, а не межцепочечные соединения
комплементарных нуклеотидов. Цепи РНК
значительно короче цепей ДНК.
Информация о структуре молекулы РНК
заложена в молекулах ДНК. Синтез молекул
РНК происходит на матрице ДНК с участием
ферментов РНК-полимераз и называется
транскрипцией. Если содержание ДНК в
клетке относительно постоянно, то
содержание РНК сильно колеблется.
Наибольшее количество РНК в клетках
наблюдается во время синтеза белка.

25.

Характеристика РНК

26. Характеристика РНК

Содержание РНК в любых
клетках в 5 – 10 раз превышает
содержание ДНК. Существует
три основных класса
рибонуклеиновых кислот:
Информационные
(матричные) РНК - иРНК (5%);
транспортные РНК - тРНК
(10%);
рибосомальные РНК - рРНК
(85%).
Все виды РНК обеспечивают
биосинтез белка.

27. Характеристика РНК

Информационная РНК.
Наиболее разнообразный по
размерам и стабильности
класс. Все они являются
переносчиками генетической
информации из ядра в
цитоплазму. Они служат
матрицей для синтеза
молекулы белка, т.к.
определяют аминокислотную
последовательность
первичной структуры
белковой молекулы.
На долю иРНК приходится до
5% от общего содержания
РНК в клетке, около 30 000
нуклеотидов.

28. Характеристика РНК

Транспортная РНК
Молекулы транспортных РНК содержат
обычно 76-85 нуклеотидов и имеют
третичную структуру, на долю тРНК
приходится до 10% от общего содержания
РНК в клетке.
Функции: они доставляют аминокислоты к
месту синтеза белка, в рибосомы.
В клетке содержится более 30 видов тРНК.
Каждый вид тРНК имеет характерную только
для него последовательность нуклеотидов.
Однако у всех молекул имеется несколько
внутримолекулярных комплементарных
участков, благодаря наличию которых все
тРНК имеют третичную структуру,
напоминающую по форме лист клевера.

29. Характеристика РНК

30. Характеристика РНК

Рибосомная РНК.
На долю рибосомальной РНК
(рРНК) приходится 80-85% от
общего содержания РНК в
клетке, состоят из 3 000 – 5 000
нуклеотидов.
Цитоплазматические рибосомы
содержат 4 разных молекулы
РНК. В малой субъединице одна
молекула, в большой – три
молекулы РНК. В рибосоме
около 100 белковых молекул.

31.

Характеристика АТФ
Аденозинтрифосфорная кислота (АТФ) - универсальный переносчик
и основной аккумулятор энергии в живых клетках. АТФ содержится во
всех клетках растений и животных. Количество АТФ колеблется и в
среднем составляет 0,04% (на сырую массу клетки).

32.

Характеристика АТФ
В клетке молекула АТФ расходуется в течение одной минуты после
ее образования. У человека количество АТФ, равное массе тела,
образуется и разрушается каждые 24 часа.

33.

Характеристика АТФ
АТФ представляет собой нуклеотид, образованный остатками
азотистого основания (аденина), сахара (рибозы) и фосфорной
кислоты. В отличие от других нуклеотидов, АТФ содержит не один, а
три остатка фосфорной кислоты.

34.

Характеристика АТФ
АТФ относится к макроэргическим веществам - веществам,
содержащим в своих связях большое количество энергии.
АТФ - нестабильная молекула: при гидролизе концевого остатка
фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную
кислоту), при этом выделяется 30,6 кДж энергии.

35.

Характеристика АТФ
Распаду может подвергаться и АДФ с образованием АМФ
(аденозинмонофосфорная кислота). Выход свободной энергии при
отщеплении второго концевого остатка составляет около 30,6 кДж.

36.

Характеристика АТФ
Отщепление третьей фосфатной группы сопровождается
выделением только 13,8 кДж. Таким образом, АТФ имеет две
макроэргические связи.