Методы определения размеров небесных тел. Тема: Определение расстояний до тел СС и размеров этих небесных тел. Определение размеров светил

Используя третий закон Кеплера, среднее расстояние всех планет от Солнца можно выразить через среднее расстояние Земли от Солнца. Определив его в километрах, можно найти в этих единицах все расстояния в Солнечной системе.

С 40-х годов нашего века радиотехника позволила определять расстояния до небесных тел посредством радиолокации, о которой вы знаете из курса физики. Советские и американские ученые уточнили радиолокацией расстояния до Меркурия, Венеры, Марса и Юпитера.

Классическим способом определения расстояний был и остается угломерный геометрический способ. Им определяют расстояния и до далеких звезд, к которым метод радиолокации неприменим. Геометрический способ основан на явлении параллактического смещения.

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя (рис. 36).

Посмотрите на вертикально поставленный карандаш сначала одним глазом, затем другим. Вы увидите, как он при этом переменил положение на фоне далеких предметов, направление на него изменилось. Чем дальше вы отодвинете карандаш, тем меньше будет параллактическое смещение. Но чем дальше отстоят друг от друга точки наблюдения, т. е. чем больше базис, тем больше параллактическое смешение при той же удаленности предмета. В нашем примере базисом было расстояние между глазами. Принцип параллактического смещения широко используется в военном деле при определении расстояния до цели посредством дальномера. В дальномере базисом является расстояние между объективами.

Для измерения расстояний до тел Солнечной системы за базис берут радиус Земли. Наблюдают положение светила, например Луны, на фоне далеких звезд одновременно из

Рис. 36. Измерение расстояния до недоступного предмета по параллактическому смещению.

Рис. 37. Горизонтальный параллакс светила.

двух обсерваторий. Расстояние между обсерваториями должно быть как можно больше, а соединяющий их отрезок должен составлять угол, по возможности близкий к прямому с направлением на светило, чтобы параллактическое смещение было максимальным. Определив из двух точек А и В (рис. 37) направления на наблюдаемый объект, несложно вычислить угол под которым с этого объекта был бы виден отрезок, равный радиусу Земли.

Угол, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом.

Чем больше расстояние до светила, тем меньше угол Этот угол равен параллактическому смещению светила для наблюдателей, находящихся в точках Л и В, точно так же как для наблюдателей веточках С и В (рис. 36). САВ удобно определять по равному ему а равны они, как углы при параллельных прямых по построению).

Расстояние

где - радиус Земли. Приняв за единицу, можно выразить расстояние до светила в земных радиусах.

Параллакс Луны составляет 57. Все планеты и Солнце гораздо дальше, и их параллаксы составляют секунды. Параллакс Солнца, например, Параллаксу Солнца соответствует среднее расстояние Земли от Солнца, примерно равное 150 000 000 км. Это расстояние принимается за одну астрономическую единицу (1 а. е.). В астрономических единицах часто измеряют расстояния между телами Солнечной системы.

При малых углах если угол выражен в радианах. Если выражен в секундах дуги, то вводится множитель

Рис. 38. Определение линейных размеров небесных светил по их угловым размерам.

Где 206265 - число секунд в одном радиане.

Знание этих соотношений упрощает вычисление расстояния по известному параллаксу:

(см. скан)

2. Определение размеров светил.

На рисунке 38 Г - центр Земли, М - центр светила линейного радиуса По определению горизонтального параллакса радиус Земли виден со светила под углом Радиус же светила виден с Земли под углом Поскольку

ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ И РАЗМЕРОВ ТЕЛ В СОЛНЕЧНОЙ СИСТЕМЕ

Разумов Виктор Николаевич,

учитель МОУ «Большеелховская СОШ»

Лямбирского муниципального района Республики Мордовия

10-11 класс

УМК Б.А.Воронцова-Вельяминова

Форма и размеры Земли

Эратосфен

(276 -194 г. до н.э.)

Способ Эратосфена:

  • измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет;
  • получив эти данные, вычислить длину дуги в 1°, а затем длину окружности и величину ее радиуса, т. е. радиуса земного шара.
  • Длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: φВ – φА.

Греческий учёный Эратосфен, живший в Египте, провёл первое достаточно точное определение размеров Земли.

Эратосфен

(276 -194 г. до н.э.)

Чтобы определить разность географических широт, Эратосфен сравнил полуденную высоту Солнца в один и тот же день в двух городах, находящихся на одном меридиане.

В полдень 22 июня в Александрии Солнце отстоит от зенита на 7,2°. В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените. Следовательно, длина дуги составляет 7,2°. Расстояние между Сиеной и Александрией (800 км) у Эратосфена равна 5000 греческих стадий, т.е. 1 стадия = 160 м.

= , L =250 000 стадий или 40 000 км, что соответствует современным измерениям длины окружности земного шара.

Вычисленный радиус Земли по Эратосфену составил 6 287 км.

Современные измерения дают для усреднённого радиуса Земли величину 6 371 км.

Базис

Способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса – АВ) и двух углов А и В в треугольнике АСВ, применяется, если оказывается невозможным непосредственное измерение кратчайшего расстояния между пунктами.

Параллактическим смещением называется изменение направления на предмет

при перемещении наблюдателя.

Для определения длины дуги используется система треугольников – способ триангуляции, который впервые был применен еще в 1615 г.

Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30- 40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других.

Точность измерения базиса длиной в 10 км составляет около 1 мм.

Измерив с помощью угломерного инструмента (теодолита) углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон.

Базис

Триангуляция, рисунок XVI века

Схема выполнения триангуляции

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в.

Для уточнения формы Земли Французская академия наук снарядила две экспедиции: в экваториальные широты Южной Америки в Перу и на территории Финляндии и Швеции вблизи Северного полярного круга.

Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора.

Это означало, что форма Земли – не идеальный шар: она сплюснута у полюсов. Ее полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1: 50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.

Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием . По современным данным, оно составляет 1/298, или 0,0034, т.е. сечение Земли по меридиану будет эллипсом .

В настоящее время форму Земли принято характеризовать следующими величинами:

сжатие эллипсоида –1: 298,25;

средний радиус – 6371,032 км;

длина окружности экватора – 40075,696 км.

В XX в. благодаря измерениям, точность которых соста-вила 15 м, выяснилось, что земной экватор также нельзя счи-тать окружностью.

Сплюснутость экватора составляет всего 1/30 000 (в 100 раз меньше сплюснутости меридиана).

Более точно форму нашей планеты передает фигура, называемая эллипсоидом , у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

Определение расстояний в Солнечной системе. Горизонтальный параллакс

Горизонтальный параллакс светила

Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определен горизонтальный параллакс Солнца.

Горизонтальным параллаксом (p ) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения.

Значению параллакса Солнца 8,8” соответствует расстояние равное 150 млн км. Одна астрономическая единица (1 а. е.) равна 150 млн км.

Для малых углов, выраженных в радианах, sin p ≈ p .

Наибольшее значение имеет параллакс Луны, который в среднем составляет 57".

Во второй половине XX в. развитие радиотехники позволило определять расстояния

до тел Солнечной системы посредством радиолокации.

Первым объектом среди них стала Луна. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра.

В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны.

При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

Пример решения задачи

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9"?

Дано:

p1=0,9“

D= 1 а.е.

p  = 8,8“

D1 = R ,

D = R ,

Решение:

D1 = = = 9,8 а.е.

Ответ: D1 = 9,8 а.е.

Определение размеров светил

Зная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус р . Формула, связывающая эти величины, аналогична формуле для определения параллакса:

Пример решения задачи

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30"?

Дано:

D= 400000 км

ρ = 30’

Решение:

Если ρ выразить в радианах, то r = D ρ

d = = 3490 км.

Ответ: d= 3490 км.

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30", а все планеты видны невооруженному глазу как точки, можно воспользоваться соотношением: sin р ≈ р .

Следовательно,

Если расстояние D известно, то r = D ρ , где величина ρ выражена в радианах.

Вопросы (с.71)

1. Какие измерения, выполненные на Земле, сви-детельствуют о ее сжатии?

2. Меняется ли и по какой причи-не горизонтальный параллакс Солнца в течение года?

3. Каким методом определяется расстояние до ближайших планет в настоящее время?

Домашнее задание

2) Упражнение 11 (с.71)

1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля?

2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удаленной (апогее) – 405 000 км. Определите горизонтальный параллакс Луны в этих положениях.

3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8" и 57" соответственно?

4. Чему равен угловой диаметр Солнца, видимого с Нептуна?

  • Воронцов-Вельяминов Б.А. Астрономия. Базовый уровень. 11 кл. : учебник/ Б.А. Воронцов-Вельяминов, Е.К.Страут. - М.: Дрофа, 2013. – 238с
  • CD-ROM «Библиотека электронных наглядных пособий «Астрономия, 9-10 классы». ООО «Физикон». 2003
  • http://static.webshopapp.com/shops/021980/files/053607438/fotobehang-planeten-232cm-x-315cm.jpg
  • http://images.1743.ru/images/1743/2017/06_june/image_18062017102234_14977633549594.jpg
  • http://www.creationmoments.com/sites/creationmoments.com/files/images/What%27s%20the%20Right%20Answer.jpg
  • https://videouroki.net/videouroki/conspekty/geom9/26-izmieritiel-nyie-raboty.files/image021.jpg
  • http://www.muuseum.ut.ee/vvekniga/pages/data/geodeesia/1-CD006-Triangulation_16th_century.jpg
  • http://elima.ru/i/12/000054e.jpg
  • http://otvet.imgsmail.ru/download/182729882_1ef2e5f39d37858546ff499b3558a78a_800.png
  • http://www.radartutorial.eu/01.basics/pic/radarprinzip.bigger.jpg

Определение расстояний до тел Солнечной системы основано на измерении их горизонтальных параллаксов.

Угол между направлениями, по которым светило М" было бы видно из центра Земли и из какой-нибудь точки на ее поверхности, называется суточным параллаксом светила (рис. 2.3). Иными словами, суточный параллакс есть угол р", под которым со светила был бы виден радиус Земли в месте наблюдения.

Рис. 2.3. Суточный параллакс.

Для светила, находящегося в момент наблюдения в зените, суточный параллакс равен нулю. Если светило М наблюдается на горизонте, то суточный параллакс его принимает максимальное значение и называется горизонтальным параллаксом р.

Вследствие суточного параллакса светило кажется нам ниже над горизонтом, чем это было бы, если бы наблюдение проводилось из центра Земли; при этом влияние параллакса на высоту светила пропорционально синусу зенитного расстояния, а максимальное его значение равно горизонтальному параллаксу p .

В рамках Солнечной системы расстояния до небесных тел определяются как геоцентрические , т.е. от центра Земли до центра небесного тела. На рис. 2.3 расстояние r до светила М есть TM .

Так как Земля имеет форму сфероида, то во избежание разногласий в определении горизонтальных параллаксов необходимо вычислять их значения для определенного радиуса Земли. За такой радиус принят экваториальный радиус Земли R Å = 6378 км, а горизонтальные параллаксы, вычисленные для него, называются горизонтальными экваториальными параллаксами. Именно эти параллаксы тел Солнечной системы приводятся во всех справочных пособиях.

Зная горизонтальный параллакс р светила, легко определить его геоцентрическое расстояние. Действительно, если ТО = R Å есть экваториальный радиус Земли, ТМ = r - расстояние от центра Земли до светила М, а угол р - горизонтальный параллакс светила, то из прямоугольного треугольника ТОМ имеем

где - горизонтальный параллакс в угловых секундах. Расстояние r получается в тех же единицах, в которых выражен радиус Земли R Å .

Горизонтальный параллакс светила можно определить по суточному параллактическому смещению этого светила на небе, которое получается вследствие изменения положения наблюдателя в результате перемещения его по поверхности Земли.

Горизонтальному параллаксу Солнца р ¤ = 8",79 соответствует среднее расстояние Земли от Солнца, равное приблизительно 149,6 × 10 6 км. Это расстояние в астрономии принимается за одну астрономическую единицу (1 а.е. ), т.е. 1 а.е. = 149,6 × 10 6 км. В астрономических единицах обычно выражаются расстоянии до тел Солнечной системы. Например, Меркурий находится от Солнца на расстоянии 0,387 а.е., а Плутон - на расстоянии 39,4 а.е.



Если большие полуоси орбит планет выражать в астрономических единицах, а периоды обращений планет - в годах, то для Земли а = 1 а.е., Т = 1 год и период обращения вокруг Солнца любой планеты с учетом формулы (2.7) определяется как

(более точная формула получается в общей теории относительности).